Optimistic Planning for the Near-Optimal Control of General Nonlinear Systems with Continuous Transition Distributions ⋆
نویسندگان
چکیده
Optimistic planning is an optimal control approach from artificial intelligence, which can be applied in receding horizon. It works for very general nonlinear dynamics and cost functions, and its analysis establishes a tight relationship between computation invested and near-optimality. However, there is no optimistic planning algorithm that searches for closed-loop solutions in stochastic problems with continuous transition distributions. Such transitions are essential in control, where they arise e.g. due to continuous disturbances. Existing algorithms only search for open-loop input sequences, which are suboptimal. We therefore propose a closedloop algorithm that discretizes the continuous transition distribution into sigma points, and call it sigma-optimistic planning. Assuming the error introduced by sigma-point discretization is bounded, we analyze the solution returned, showing that it is near-optimal. The algorithm is evaluated in simulation experiments, where it performs better than a state-of-the-art open-loop planning technique; a certainty-equivalence approach also works well.
منابع مشابه
The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کاملA Game Theoretic Approach for Sustainable Power Systems Planning in Transition
Intensified industrialization in developing countries has recently resulted in huge electric power demand growth; however, electricity generation in these countries is still heavily reliant on inefficient and traditional non-renewable technologies. In this paper, we develop an integrated game-theoretic model for effective power systems planning thorough balancing between supply and demand for e...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملTopology-preserving flocking of nonlinear agents using optimistic planning
We consider the generalized flocking problem in multiagent systems, where the agents must drive a subset of their state variables to common values, while communication is constrained by a proximity relationship in terms of another subset of variables. We build a flocking method for general nonlinear agent dynamics, by using at each agent a near-optimal control technique from artificial intellig...
متن کامل